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Global Nonlinear Aerodynamic Modeling Using Multivariate
Orthogonal Functions

Eugene A. Morelli*
Lockheed Engineering and Sciences Company, Inc., Hampton, Virginia 23681

A technique was developed for global modeling of nonlinear aerodynamic coefficients using multivariate
orthogonal functions generated from the data. The orthogonality of the modeling functions allowed straight-
forward determination of an adequate model structure and the associated parameter values. A minimum
predicted squared-error criterion was used to determine which orthogonal functions should be retained in the
model. Each retained orthogonal function was then decomposed into an expansion of ordinary polynomials in
the independent variables so that the final model could be interpreted as selectively retained terms from a
multivariable power series expansion. The approach was demonstrated on the Z body axis aerodynamic force
coefficient C7 for the F-18 High Angle of Attack Research Vehicle. The data came from a tabular wind-tunnel
data base and covered the entire subsonic flight envelope. For a realistic prediction case, the analytical model
predicted C7 within 5% of the wind-tunnel values. The modeling technique developed in this article was shown
to be capable of generating a compact, global analytical representation of nonlinear aerodynamics. The resultant
polynomial model demonstrated good predictive capability, global validity, analytical differentiability, and
improved insight into the character of the nonlinear aerodynamics.

Nomenclature
a = orthogonal function parameter vector
at = yth orthogonal function parameter
bkl = /th parameter for the kth orthogonal function
Cz = Z body axis aerodynamic force coefficient
c = wing reference chord
Cj = /th polynomial function parameter
e = W-dimensional modeling error vector
J = cost function
k,k = indices for multivariate orthogonal functions
kj = order of the /th independent variable
M = Mach number
m = number of independent variables
N = number of sample times
n = number of retained orthogonal functions
wmax = total number of generated orthogonal functions
np = number of retained polynomial functions
n, = number of terms in a candidate model
P = N x n matrix of orthogonal functions
pj = yth yV-dimensional vector multivariate orthogonal

function
q = body axis pitch rate
V = airspeed
wk = kth yV-dimensional vector multivariate polynomial

function
X = Nxm matrix of independent variable vectors
Xj = yV-dimensional vector of independent variable /
y = -average value of y,-
y = N-dimensional dependent variable vector
yf = /th value of the dependent variable
/ = /V-dimensional vector of ones
a = angle of attack
Sf = trailing-edge flap deflection
8,, = leading-edge flap deflection
6\. = horizontal stabilator deflection
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y{ = orthogonalization scalar
a;, = a priori upper-bound estimate of prediction mean

square error
of, = maximum prediction mean square error
cp(A:) = order of multivariate function k
® = vector element-by-element product
<^> = implies and is implied by

Superscripts
T = transpose
- 1 = matrix inverse

= time derivative
= estimate

Introduction

M ODERN high-performance aircraft operate in flight
regimes characterized by nonlinear aerodynamics. Typ-

ically, this involves wide variations in angle of attack, sideslip
angle, and body axis rotational rates. Activities such as control
system design, dynamic analysis, and flight simulation require
that the nonlinear aerodynamics be modeled with high fidel-
ity.

An important aspect of accurately modeling nonlinear aero-
dynamics is determining the mathematical form that relates
control surface deflections and aircraft response variables to
aerodynamic forces and moments acting on the aircraft, de-
scribed in terms of nondimensional coefficients. In general,
the goal is to find a compact model that still has adequate
complexity to capture the nonlinearities. Keeping the number
of terms in the model low improves parameter identifiability,
resulting in more accurate parameter estimates and good pre-
diction performance.

Models can be loosely classified as local or global. Local
models are identified using data from a relatively small region
of the independent variable space. Typically, local aerody-
namic models are valid for small ranges in angle of attack and
sideslip angle at a fixed Mach number. A global model results
when the range of validity for the identified model covers a
large portion of the flight envelope, e.g., subsonic flight for
large ranges in angle of attack and sideslip angle. Given this
latter type of (generally nonlinear) model for the aerodynamic
coefficients, operations can often be streamlined by replacing
many local models with a single global model.
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If the global analytical model for an aerodynamic force or
moment coefficient resembles a truncated multivariable power
series expansion, some insight can be gained into the nature
of the nonlinear aerodynamics. Such insight is not available
in a tabular aerodynamic data base where typically linear
stability and control derivatives are tabulated as functions of
Mach number, angle of attack, and/or sideslip angle. An an-
alytical description of the aerodynamic coefficients in terms
of ordinary polynomials would also have a smooth gradient
that could be easily computed. Smooth gradients are required
in control system design, optimization, global nonlinear sta-
bility and control analysis, and in producing local linear models
by evaluating partial derivatives at various trim conditions.
Global polynomial models could also be updated more easily
based on additional data from flight tests, since the changes
could be assigned to specific terms of the polynomial function,
rather than having to decide how to distribute the changes
over the values in the aerodynamic tables.

An important property of any model is predictive capabil-
ity. The main requirements for good predictive capability are
a data set that spans the complete independent variable space
and an adequate model structure with a minimum number of
model parameters, i.e., a compact model. For aircraft aero-
dynamic forces and moments, wind-tunnel data generally spans
the independent variable space quite well, and thus can be
used to determine adequate model structure for a global model
with good predictive capability. The connection between model
parameterization and predictive capability arises from the fact
that overparameterization in the model "fits the noise" to
some extent and leads to inaccurate parameter estimates with
high variances. This has a detrimental effect on predicting the
dependent variable, given new data for the independent var-
iables.

Several problems are encountered when attempting to de-
termine a compact global nonlinear model comprised of pol-
ynomial terms in the independent variables using traditional
methods. First, it is never clear what the structure of the model
should be, or, equivalently, what terms should be retained in
the truncated multivariable power series. Several researchers
have used concepts from statistical hypothesis testing to select
terms for the model from a pool of postulated terms.' ~4 This
approach is generally known as stepwise regression. Even if
a candidate model structure is adequate, however, the re-
gressors in the resulting least-squares problem can have high
correlation (e.g., linear and cubic terms in the same inde-
pendent variable are often highly correlated). This renders
the parameter estimation problem ill-conditioned, causing in-
accurate model parameter estimates. Complicating matters
further is the fact that the model structure determination and
the parameter estimation are coupled, so that adequate model
structure is an important prerequisite to accurate parameter
estimates. At the same time, evaluating the adequacy of a
postulated model structure requires estimates of the model
parameters, resulting in a circularity that makes the problem
difficult to solve.

Researchers modeling nonlinear aerodynamics have also
used splines in one or two independent variables to fit data
with both local5 6 and global7-8 models. Klein and Batterson9

included spline functions in the pool of postulated terms
for stepwise regression to identify both local and global
nonlinear aerodynamic models. Splines are piecewise poly-
nomials with matched amplitude and derivative conditions
at fixed points in the independent variable space, called
knots. In general, spline functions are computationally dif-
ficult for more than two independent variables and can in-
troduce significant curvature between knots. With the ex-
ception of approaches like Ref. 9, modeling with spline
functions includes no systematic approach to determining
an adequate model structure, so that noise in the data is
matched on an equal basis with the real underlying func-
tional dependence. In addition, models that include spline

functions make the physical dependence less clear and are
generally difficult to update based on new data.

Previous investigations targeted specifically toward mod-
eling the nonlinear aerodynamics of the F-18 High Angle of
Attack Research Vehicle (HARV) tabular wind-tunnel data
base have resulted in models obtained using ad hoc methods
and functions applied at a single Mach number, with some
interpolation required.10-11 The analytical modeling in Refs.
10 and 11 was motivated by the need for smooth derivatives
of the aerodynamic coefficients in various control system de-
sign and optimization studies. A more common approach to
aerodynamic modeling is to use a collection of local models
valid at specific flight conditions that encompass the flight
envelope of interest.12-13

The present work was initiated to investigate the suitability
of multivariate orthogonal functions generated from the data
for the task of building global nonlinear aerodynamic models
with good predictive capability. For the reasons cited above,
it was desired that the final form of the model resemble a
truncated multivariable power series expansion for the de-
pendent variable in terms of the independent variables. A
two-stage technique was developed to achieve an accurate
model of the desired form—first, model structure was de-
termined using multivariate orthogonal functions, then the
retained multivariate orthogonal functions were decomposed
into ordinary polynomial terms in the independent variables.
To demonstrate the technique, a global model was identified
for Cz from the wind-tunnel aerodynamic data base for the
F-18 HARV.14 The result was a single compact nonlinear
model valid over the entire subsonic flight envelope.

The theory of modeling a function of one independent var-
iable using orthogonal functions generated from the data was
developed by Forsythe.15 Weisfeld16 extended the orthogonal
function generation scheme to functions of several indepen-
dent variables. These works appeared in the late 1950s. At
least one study17 was done where the theory outlined by For-
sythe and Weisfeld was applied to a practical problem—mod-
eling the properties of steam as a function of two independent
variables. However, at that time, computer memory was in-
sufficient to solve modeling problems with many independent
variables and/or large amounts of data, and the method ap-
pears to have been abandoned. With the dramatic increase
in computer memory since the late 1950s, along with the
techniques developed in this article for model structure de-
termination using orthogonal functions and expressing or-
thogonal functions in terms of ordinary polynomials in the
independent variables, this theory became attractive for mod-
eling nonlinear aerodynamic coefficients. The current work
extended and applied the theory described in Refs. 15 and
16 to the problem of modeling nonlinear aerodynamic coef-
ficient functions, including both model structure determina-
tion and parameter estimation.

The next section describes the theoretical development.
Following this, an example of the nonlinear modeling tech-
nique applied to the Cz of the F-18 HARV is presented, along
with some model validation results and a comparison of an-
alytical derivatives to those obtained using finite differences
on the tabular wind-tunnel data base.

Theoretical Development
Problem Statement

Assume an jV-dimensional vector of dependent variable
values y = [ _y , , _y2 , . . . , yN]T, expressed in terms of a linear
combination of n mutually orthogonal functions py, j — 1,
2, . . . , n. Each ps is an W-dimensional vector, which in gen-
eral depends on m vectors, xh i = 1, 2, . . . , m, where each
jt, represents an NX 1 vector of the /th independent variable.
Let X = [*,, jc2, . . . , *,„], so thatp, = PJ(X). In the following
development, the dependence of the pf on X is understood,
but not explicitly shown in the notation. The dependent var-
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iable y is then modeled in terms of a linear expansion in the
PJ

The assumed orthogonality of the/?, functions [Eq. (2)], along
with Eq. (7), transforms Eq. (8) into

where

~ a\P\

= 0

(1)

(2)

The cij, j = 1, 2, . . . , /t, are constant model parameters and
e denotes the modeling error vector. We put aside for the
moment the question of how to determine the orthogonal
functions PJ for / = 1, 2, . . . , n, as well as how to select
which orthogonal functions should be included in the model
of Eq. (1) (which also determines n). Now define an Nxn
matrix P

P = [P i , j> 2 , • - • ,PH] (3)

and let a = [0,, «2, . . . , a,,]T. Then using (1)

= Pa + (4)

The goal is to determine a so that the least-squares cost func-
tion

J = (y- Pa)T(y - Pa) (5)

is minimized. The least-squares estimate for a is15

a = (PrP) lPTy (6)

Model Structure Determination
If the functions in the columns of matrix P were ordinary

polynomials in the independent variables with near linear
dependence, Eq. (6) would give erroneous estimates a, due
to the ill-conditioning of the PTP matrix. In addition, an
inversion of the PTP matrix would have to be done for each
set of candidate polynomial functions considered for the model
(implicitly including various values for n). This is done, e.g.,
in stepwise regression techniques.1 4 When the functions in
P are orthogonal, as assumed here, PTP is a diagonal matrix,
and the problems of inverting an ill-conditioned matrix dis-
appear. In addition, the least-squares problem is then decou-
pled, since each row of (6) can be solved independently. For
the yth orthogonal function in P, the corresponding row of
(6) gives

The fact that this decoupling does not occur with ordinary
polynomials makes model structure determination difficult
because the values of all parameters in a depend on all poly-
nomial functions included in the model. Equation (7) shows
that when the py are orthogonal, each 0y depends only on the
measured values of the dependent variable y and the corre-
sponding orthogonal function pr This means that any term
ttjpj in Eq. (1) is independent of any of the other terms in-
cluded in the model. Therefore, the selection of the number
n of orthogonal functions to be included in the model, as well
as which particular p; should be included as one of those n
orthogonal functions, can be done by examining the inde-
pendent contribution of each orthogonal function to reducing
the cost /. The expression for the independent cost reduction
due to each orthogonal function is developed next.

Substituting the definitions of a and P into Eq. (5), the cost
can be expressed as

J = yTy - 2
(9)

where / is used in place of / because estimates of 0y were
introduced from Eq. (7).

Equation (9) shows that the benefit of including each or-
thogonal function can be quantified in terms of direct reduc-
tions in the squared-fit error, independently of which or-
thogonal functions are already included in the model of Eq.
(1). This makes the model structure determination [choosing
the functions in matrix P, which implicitly includes determi-
nation of n in Eq. (1)] a matter of determining how many
functions one is willing to pay for a clearly specified squared-
fit error, given by /. The scalar values ajpjpj were used to
rank the p-} in order of greatest to least contribution to re-
duction in the squared fit error. With this ranking, n was
chosen based on a criterion that represented a tradeoff be-
tween reduction in squared fit error and the number of terms
required in the final form of the model. The criterion and its
use in determining an adequate model structure will be de-
scribed next.

The mean squared error (MSE) can be defined as

where

MSE = (l/N)(y - y)T(y - y) = (l/N)J (10)

y = Pa (11)

The MSE quantifies the model fit to the data, but does not
account for the number of terms in the model. A reduction
in MSE could be made by simply adding more terms to the
model in Eq. (1). This is because each added orthogonal
function term would produce an additional positive term in-
side the summation of Eq. (9), provided each new orthogonal
function is, in fact, orthogonal. Thus, the MSE provides no
guard against overfitting the modeling data set. An adequate
model must fit the data well, but at the same time have good
predictive capabilities. The latter requires a compact model,
as discussed previously.

Another quantity, the predicted squared error (PSE), was
introduced to account for the number of terms in the model.
PSE was defined ashs

PSE -

= MSE 4- 2<r2(n,IN) (12)

where a2, is a constant to be discussed below, and nt is the
number of terms in the model. The first term on the right
side of Eq. (12), MSE, measures the fit error. The other term
is a linear penalty to prevent including too many terms in the
model, and thus overfit the data. This overfit penalty term is
intentionally biased high in order to prevent overly complex
models and also to account for the fact that the residual vector
(y — y), in general, will not be white (see Ref. 18 for details).
The constant a2 is the a priori upper bound estimate of the
expected squared error between future data and the model,
i.e., the upper bound MSE for prediction cases. A simple
estimate independent of model structure was used, as rec-
ommended in Ref. 18 and described next.

The maximum possible value for cr2 was considered to be
that corresponding to a constant model consisting of the av-
erage of the measured values. Denoting this maximum value
by of,

/ = - 2 + 2 2 (8) (13)
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where

Assuming crj} to be a random variable with uniform distri-
bution, and 0 < cr-p < cr,2,, the mean value (of}/2) was used for
o-~. Then substituting for <rj, in Eq. (12)

PSE - MSE + crl(n,IN) (14)

with of, defined by Eq. (13).
The PSE from Eq. (14) was evaluated as each orthogonal

function was added to the proposed model with the ordering
determined by the greatest to least contribution to reduction
in the squared fit error. At some point, the reduction in the
fit error for additional orthogonal functions added to the model
was purchased with too many additional terms in the final
form of the model. This point was marked by a minimum
value of PSE, which defined an adequate model structure
with good predictive capability. With all the PJ mutually or-
thogonal, each added term necessarily decreases the MSE
while increasing the model overfit term in the PSE, thus as-
suring a clear global minimum for the PSE. More details on
the statistical properties of the PSE and justification for its
use in modeling problems can be found in Ref. 18.

Using orthogonal functions to model the dependent vari-
able made it possible to order the modeling functions in terms
of their respective contributions to reduction in the fit error
and to evaluate the merit of including each function individ-
ually as part of the model, using PSE. This approach made
model structure determination a well-defined and straight-
forward process.

Orthogonal Function Generation
The technique for generating orthogonal functions of sev-

eral independent variables based on the data (the functions
PJ) will now be outlined. The presentation given here is based
on material in Ref. 16. As will be seen, each py in general
depends on X. Let jc,-, / = 1, 2, . . . , m again represent
Nxl vectors of the m independent variables. Each element
of the Xj corresponds to one data point. Assign k as an ordered
positive integer that serves as a label for a unique set of m
non-negative integers, {/CM k2, . . . , k,n}. For example, if
m = 2, it might be that k = I O {0, 0}, k = 2 O {0, 1}, k
= 3<^>{1, 0}, k = 4<^>{0, 2}, k = 5O{1, 1}, etc. Orthogonal
function pk is associated with the kth set of m non-negative
integers, and also with the polynomial function wk of the m
independent variables:

where, e.g., j c f i denotes an yV-dimensional vector with each
element of vector xl raised to the k\ power, and (x) denotes
an element-by-element product. Note that each wk is an or-
dinary polynomial in the independent variables. Define the
order of wk as cp(£) = /c, + k2 + • • • + km. Then the or-
thogonal functions of m independent variables are defined by
the following generating relations:

Pi = 1 (16)

where 1 represents an Nxl vector of ones, and k = 1 is
associated with the set of m zeros, k{ = k2 = • • • = km_{ =
knt = 0, or {0, 0, . . . , 0}. Each new set k evolves from a
previous set k, related as follows:

(17)

where fju is an integer. In Eq. (17), the only difference between
the integers in set k and those in set k is that the integer
index for independent variable JJL, in set k is one more than in
set k. By assumption, the kth orthogonal function has al-
ready been generated. The orthogonal function pk is then
generated by

Pk = (18)

with the summation over all / < k such that cp(A:) - 9(7) <
2. The y( are constants to be determined. The index k and
its associated integer set keep track of the independent var-
iable orders for the kth orthogonal function. Each new or-
thogonal function must be orthogonal only to the previously
generated orthogonal functions of the same order, one order
lower, and two orders lower to be orthogonal to the entire
set of generated orthogonal functions. Proof of this was found
by Weisfeld.16 Orthogonality was verified numerically by the
author in the program developed for this work.

The scalars y{ are computed for each j by multiplying Eq.
(18) by PJ transpose and invoking the orthogonality of thepy,
y = l , 2 , . . . , k:

ri = (19)

The quantities on the right in Eq. (19) are either a measured
independent variable vector or a previously generated or-
thogonal function. After the scalars y{ are determined from
Eq. (19), pk can be computed from Eq. (18). The process can
be repeated to generate orthogonal functions of arbitrary or-
der in the independent variables, subject only to limitations
related to the information contained in the data.

Parameter Estimation
Once the orthogonal functions to be included in the model

of Eq. (1) were generated by Eqs. (18) and (19), then selected
by minimizing the PSE from Eq. (14), each retained orthog-
onal function was decomposed into an expansion of ordinary
polynomial functions in the independent variables. This step
introduced little error, as described below.

From Eq. (18) and the discussion in the previous section,
it can be deduced that for any index /c, pk is a linear combi-
nation of the w,- for all / < k. In other words, each pk can be
expressed as a linear combination of the wh i = 1 , 2 , . . . ,
/c, which are the ordinary polynomials corresponding to the
integer sets of all previously generated orthogonal functions
plus the kth. In equation form

w2 + bk (20)

where the bki, i = 1, 2, . . . , / : , are constants to be deter-
mined. There is no question as to the model structure given
for each pk in Eq. (20), because this model structure was
guaranteed by the use of Eq. (18) in generating each orthog-
onal function.

As an example, for m = 2, let k = 5 be the label for the
set {1, 1}. Then the following expansion was used to represent
p5 in terms of ordinary polynomial functions:

p5 = b5lw{ + b52w2 + 653 H>3 + 654^4 + b55w5 (21)

where H>,, w2, H>3, w>4, and w5 are ordinary polynomial functions
corresponding to the integer sets for the orthogonal functions
/?,, p2, p3, /?4, and /j5, respectively. Since the number of or-
dinary polynomial terms required for each orthogonal func-
tion was known from expansions like Eq. (21), it was possible
to use a value for n, in Eq. (14) for the PSE that corresponded
to the number of ordinary polynomial terms in the final form
of the model. This point was crucial to determination of a
compact adequate model in terms of ordinary polynomials in
the independent variables.
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The bki, i = 1, 2, . . . , k, in Eq. (20) for the decomposition
of each orthogonal function were computed using a conven-
tional least-squares solution, as given in Eq. (6). Since the
form and number of terms needed for the ordinary polynomial
expansion of each orthogonal function was known, the de-
composition of the orthogonal functions into an ordinary
polynomial expansion introduced very little error—on the
order of the numerical precision (10 12)—for each orthogonal
function.

When all retained orthogonal functions were decomposed,
the expansions like Eq. (20) were substituted into Eq. (1) for
each retained orthogonal function, and common terms in the
ordinary polynomials were combined using double precision
arithmetic to arrive finally at a multivariate model using only
ordinary polynomials in the independent variables. Ordinary
polynomial coefficients with absolute value less than 10 ~6

were dropped from the final model. The program developed
for this work uses the procedure described above, and can
determine up to eighth-order models with a maximum of 10
independent variables. These limits were imposed by com-
puter memory constraints only.

In summary, a model given by Eq. (1) of the dependent
variable in terms of p} was determined using the minimum
PSE criterion. Each PJ in the expansion (1) was then decom-
posed into an expansion of ordinary polynomial functions,
with the results combined to arrive at a model of the form:

y =

with

{ 1 , 2 , . . . , nmax

(22)

(23)

where w,, / = /,, /2, . . . , ifl> are ordinary polynomials in the
independent variables. The positive integer values of / t ,
/2, . . . , /„ and np depend on the particular orthogonal func-
tions retained in the model structure determination stage, and
also on the subsequent decomposition of each retained or-
thogonal function in terms of ordinary polynomials. The num-
ber of ordinary polynomial terms np may be different than n
(from the orthogonal function expansion).

The orthogonal function model of Eq. (1) was useful in
determining the model structure for the dependent variable
using the minimum PSE criterion, by virtue of the properties
of orthogonal functions and the resultant decoupling of the
associated least-squares problem. The subsequent decom-
position of the retained orthogonal functions was done to
express the results in physically meaningful terms and to allow
analytical differentiation for derivatives of the dependent var-
iable with respect to the independent variables.

Example
The Z body axis aerodynamic force coefficient based on

the F-18 HARV wind-tunnel data base for a rigid aircraft
flying out of ground effect with landing gear retracted, no
external stores, and no speed brake deflection, can be rep-
resented functionally as

Cz - Cz(a, M, qc/2V, 5,, 5M, 8f) (24)

This example was chosen because it is representative of re-
alistic global nonlinear aerodynamic modeling problems using
experimental data.

Unsteady aerodynamic effects, which depend on a, were
combined with the aerodynamics due to q. This can be done
because a and q are nearly the same for most maneuvers.
The functional form of the model shown in Eq. (24) results
from setting a = q for data collection from the wind-tunnel
data base, which includes unsteady effects. Therefore, the
terms in Eq. (24) associated with q include the effects of both

q and a. In general, when both q and a dependencies are
included in the model, their similarity leads to identifiability
problems when attempting to update the model based on
additional data (e.g., from flight tests).

In Ref. 14, the lift and drag coefficients are built up from
a set of component functions, with each component function
determined by a table lookup in the F-18 HARV wind-tunnel
data base. For the present work, these component functions
were combined and resolved along the Z body axis to produce
data for Cz. The orthogonal function modeling procedure
described in this work was used to model Cz in the following
functional form:

Cz - CZl(a, M, 5,) + Cz,(«, M, qc/2V)

+ Czja, M)8H + CZa(a, M)8, (25)

The four functions in Eq. (25) were modeled individually
over the independent variable ranges given below:

-0.07 rad < a < 1.57 rad

(-4deg) (90deg)

0.2 < M < 0.9

-0.524 rad/s < q < 0.524 rad/s

(-30deg/s) (30deg/s)

-0.419 rad < 8S < 0.183 rad

(-24deg) (10.5 deg)

-0.052 rad < 8,, < 0.576 rad

(-3 deg) (33 deg)

-0.140 rad < 5, < 0.785 rad

(-8 deg) (45 deg)

(26)

(27)

(28)

(29)

(30)

(31)

The independent variable ranges in expressions (26-31) rep-
resent all the subsonic data available in the F-18 HARV wind-
tunnel data base.

Equation (25) was used in lieu of the general form of Eq.
(24), because the functional form of Eq. (25) was known from
the buildup of aerodynamic force coefficients inside the F-18
HARV simulation, and no nonlinear modeling capability would
have been demonstrated by pretending not to know this. Fur-
thermore, decomposing the problem allowed the modeling
program to run faster and use less memory. The model also
could have been determined directly from the functional form
shown in Eq. (24) as a single function of six independent
variables.

For the case at hand, the number of independent variables
was either two or three. The order of the independent vari-
ables (/c,, /c2, . . . , km), and the order of the generated mul-
tivariate orthogonal functions cp(&), were limited to the max-
imum values allowed by program memory constraints [i.e.,
/:, < 8, k2 < 8, . . . , km < 8, and <p(£) < 8]. Outside of the
assumption that an eighth-order dependence should be the
maximum required, no a priori assumptions were made con-
cerning model structure. The terms for the model were de-
termined automatically by the algorithm described above, us-
ing the minimum PSE criterion to select appropriate multivariate
orthogonal functions, then decomposing each retained or-
thogonal function in terms of ordinary polynomials. Orthog-
onal functions of low order that significantly reduced the MSE
were preferred because they involved relatively fewer ordi-
nary polynomial terms and thus minimized the PSE. The com-
plete global analytical model for Cz required 19 orthogonal
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function terms and 22 terms in the resulting ordinary poly-
nomial model. The final form of the polynomial model was

Cz = c, + C2a + c3a2

+ c8Af + (cy + cwa

+ cl5aM + c,6

+ (c,9 + c2()a

c14M

(cI7 + clKa)8n

(32)

Values for c,, / = 1, 2, . . . , 22 are given in Table 1. All
angular quantities in Eq. (32) were expressed in radians. The
first eight terms in Eq. (32) modeled CZ], the next eight terms
modeled CZl, and models for CZs and Cz& can be discerned
from a comparison of Eqs. (25) and (32).

Figure 1 shows the fit to the Cz, function over the entire
modeled range of a and 5,, with fixed M = 0.4. Experimental
values are shown by the wire mesh and the analytical function
fit is represented by the smooth surface. Mach number was
fixed so that a three-dimensional figure could be drawn. Func-
tion fits in other regions of the independent variable space
were similar in terms of MSE and the smooth fairing through
the experimental wind-tunnel values. The analytical polyno-
mial model faired through a discontinuity in the wind-tunnel
data that occurred at a = 0.698 rad (40 deg). This disconti-

Table 1 Parameters for a compact
global nonlinear model of the F-18

HARV Cz

Parameter Value

c,
C2
C3

C4
cs
Q,
C7

c*
Cy

C,o
Cn
C,2

C,3

C,4

C,S

C,6

CM
C|«

C.C,

C2(,
C21
C22

0.86398 E- 01
-0.56828 E + 01

0.42587 E + 01
- 0.78030 E + 00
-0.96090 E + 00
-0.22770 E + 00

0.44990 E + 00
- 0.72250 E- 01
-0.74152 E + 01

0.73036 E + 01
-0.40268 E + 02

0.5 1855 E + 02
-0.17351 E + 02
-0.52958 E + 00

0.17775 E + 02
-0.11967 E + 02

0.15135 E + 00
-0.48175 E + 00
-0.81942 E + 00

0.57681 E + 00
-0.27117 E + 00

0.74850 E + 00

-10

stabilator (deg)

20 -20

nuity appeared in the data because two wind-tunnel data sets
(one for low a, and one for high a) were merged to create
the F-18 HARV wind-tunnel data base. The global least-
squares nature of the analytical model reasonably repaired
this local defect, which was clearly unrealistic in its inconsis-
tency with the rest of the data. This demonstrates the ro-
bustness of global modeling to local anomalies, which of course
includes experimental errors. The robust smoothing by the
global analytical model is difficult to see in Fig. 1, but will be
apparent in the prediction case described below.

Figure 2 shows the result of using tabular wind-tunnel aero-
dynamics (solid lines) vs using the polynomial model given
by Eq. (32) (dotted lines) for the same independent variable
inputs, shown in Fig. 3. The time histories of the independent
variables in Fig. 3 were taken from an actual flight test ma-
neuver. The last three plots of Fig. 3 show the control surface
inputs for this longitudinal maneuver, a push-over pull-up
initiated at a = 30 deg. This maneuver was selected because
it covered a wide range of a, M, 6y, and Cz. The result in
Fig. 2 represents a prediction case for the global analytical
model, since the time histories in Fig. 3 were not used to
identify the model. The average discrepancy in Fig. 2 was
3.02% of the wind-tunnel value. The match achieved in Fig.
2 is very good, with the polynomial model having the advan-
tages of simplicity, compactness, global validity, analytical
differentiability, and improved insight into the character of
the nonlinear aerodynamic force.

Most of the discrepancy in the Cz prediction of Fig. 2 was
traced to the smoothing of data discontinuities and extrapo-
lation beyond the limits of the wind-tunnel data base. This is
apparent in Fig. 4, which shows time histories of the CZ[, CZl,
Cz& and Cz functions for the same run. In particular, when
a passed through 40 deg (at approximately 13.5 and 23.5),
significant discontinuities occurred in CZ), CZf> and CZg_ com-
puted from the wind-tunnel data base, as a result of the Afore-
mentioned merging of two wind-tunnel data sets. The global
analytical model made reasonable reparations of these local
discontinuities, as can be seen in Fig. 4.

The wind-tunnel data base values for CZg and CZg were
zero when a exceeded 40 deg, apparently because no data
existed for these functions at a > 40 deg. These zero values
were not used in the analytical modeling, so that the variations
shown in Fig. 4 for the analytical model were pure extrapo-
lations. This approach was considered more physically plau-
sible than setting function values to zero when a exceeded 40
deg.

The small discrepancy for the CZl function in the second
plot of Fig. 4 was partly due to the a = q assumption in the
analytical polynomial modeling, which was discussed previ-
ously. In addition, the wind-tunnel data for both CZl and CZf.
exhibited relatively large variability in some regions of the
independent variable space. The PSE criterion prevents pre-
cise modeling of this variability because of the attendant re-
quirement for many more terms in the model and the detri-

wind tunnel
polynomial model

alpha (deg)

Fig. 1 Wind-tunnel data and polynomial model for CZ)(a, M,
M = 0.4.

0 5 10 15 20
time (sec)

Fig. 2 Z body axis force coefficient Cz.
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Table 2 Comparison of PSE with MSE for a
prediction case

10 15 20
time (sec)

25 30

Fig. 3 Independent variable time histories from flight test.

mental effects this would have on predicting the dependent
variable in other regions of the independent variable space.

Another (probably small) source of discrepancy in Fig. 4
could be that the values from the wind-tunnel data base were
linearly interpolated between tabulated values. It is evident
from Figs. 2 and 4 that the small mismatch in modeling Cz
for this prediction case was primarily from smoothing the local
discontinuities in the wind-tunnel data and extrapolation for
a > 40 deg, both of which were considered acceptable and
desirable.

In Table 2, PSE computed during the modeling of each
function in Eq. (25) was compared to MSE for the prediction
case of Fig. 4. The data plotted in Fig. 4 was used in Eq. (10)
to compute the MSE for the prediction case. Calculation of
MSE for the C^ and CZs time histories excluded the por-

Function

!

PSE from the
model

determination

0.0107
4.45 E-05
0.0089
0.0141

MSE for the
prediction

case (Fig. 4)
0.0032
3. 87 E- 06
0.0017
7. 69 E- 04

10 15 20 25 30

0.03

0.02

0.01

2 0

-0.01

-0.02

0.2

0.1

8n 0

-0.1

-0.2

-0.3

-0.4

0.6
0.4
0.2

- / °
-0.2
-0.4
-0.6
-0.8

10 15 20 25 30

10 15 20 25 30

0 5 10 15 20 25 30
time (sec)

Fig. 4 Cz component functions.

tion where the analytical model extrapolated (a > 40 deg).
The values in Table 2 indicate that the PSE gave conservative
estimates of MSE for the prediction case. This was expected
because the PSE from Eq. (14) is intentionally biased, as
explained previously. In this work, the PSE was not used as
a quantitative estimator of the MSE for prediction cases, but
rather as a tool for model structure determination.
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• wind tunnel
• polynomial model

0 25 305 10 15 20

time (sec)

Fig. 5 Calculated alpha derivative dCz/da.

The form of the analytical model in Eq. (32) was particu-
larly easy to differentiate with respect to the independent
variables. The program developed for this work was designed
to compute derivatives analytically by automation of the power
rule of differentiation from elementary calculus. Figure 5 shows
time histories of (dCz/da) (a in radians), computed for the
same prediction case. The solid line was computed by central
finite differences (Aa = ±1.0 deg) using the tabular wind-
tunnel data base, and the dotted line represents an analytical
derivative of Eq. (32). Figure 5 shows that the local slopes
from the global analytical model do not always match closely
with local slopes from the wind-tunnel data base. This is be-
cause the analytical model is global, and therefore, (roughly
speaking) attempts to model only the most prominent features
in the data. The analytical derivative is much smoother and
may in fact be more accurate, since the derivative is exact
and the global analytical model smoothes the local disconti-
nuities and experimental error that degrade the accuracy of
the finite difference derivative.

Concluding Remarks
A new technique for modeling nonlinear aerodynamic coef-

ficients using multivariate orthogonal functions was devel-
oped. The technique used a minimum predicted squared-error
criterion and the orthogonality of the modeling functions to
determine an adequate model structure by decoupling the
associated least-squares problem. After the model structure
was determined using multivariate orthogonal functions, each
orthogonal function was broken down into ordinary polyno-
mials in the independent variables. This latter step was
straightforward because the structure of each generated mul-
tivariate orthogonal function was known from the generation
process. After collecting like terms, the final model could be
interpreted as selectively retained terms from a multivariable
power series. The method is general, although it was devel-
oped for the purpose of modeling nonlinear aerodynamic
coefficients.

The approach was described in detail, then demonstrated
by constructing a global analytical model for Cz of the F-18
HARV based on wind-tunnel data. For a realistic prediction
case, Cz was modeled within 5% of the wind-tunnel values
using the global polynomial model. In addition, the global
polynomial model exhibited desirable characteristics in terms
of robustness to local data anomalies and reasonable extrap-
olation properties.

The modeling technique described here was shown to be
capable of generating a compact, global analytical represen-
tation of nonlinear aerodynamics with good predictive ca-
pabilities from which smooth analytical derivatives of any

order can be determined easily. In addition, the technique
provides insight by identifying the independent variable com-
binations that are most important in the global characteri-
zation of the nonlinear aerodynamics.
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